宇宙太陽光発電システムにおける 大型反射鏡構造モデルの実現性検討

○北本和也¹⁾,藤田辰人²⁾,松井信¹⁾,山極芳樹¹⁾ ¹⁾静岡大学,²⁾宇宙航空研究開発機構

Feasibility Study of Structural Model for Large Reflector in Space Solar Power Systems

Kazuya Kitamoto¹⁾, Tatsuhito Fujita²⁾, Makoto Matsui¹⁾, Yoshiki Yamagiwa¹⁾ ¹⁾Shizuoka University, 3-5-1 johoku, Hamamatsu, Japan ²⁾Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Japan

Key Words: SSPS, SPS, Large space structure, Reflector

Abstract

SSPS can convert solar energy into microwave or laser beam on the geostationary orbit (GEO), and transmit microwave and laser beam to the earth even at night, cloudy or rainy day. The microwave based SSPS has large reflector for gathering of solar light, solar panel and microwave power transmitter. They are large structure of km size. Now as a first step for realizing SSPS, we study structural model of 100m size for reflector. The purpose of this study is to clarify issues for the realizing of structural model for large reflector. The author made structural model of 100m size using truss for reflector. The structural properties, optical properties, and thermal properties of the model are analyzed. This study shows that the relationship between angle accuracy for attaching the mirrors and the light collecting performance, and the effect of thermal on the member in the structural model. As the result of these analyses, the required angle accuracy for attaching the mirror is ± 0.003 [rad] (= ± 0.171 [deg]). There's a possibility to buckling of the member due to the large temperature difference of the members inside. Therefore, the structural model for large reflector is need proper thermal management.

1. 背景

宇宙太陽光発電システム(SSPS: Space Solar Power Systems)とは、宇宙空間の軌道上に太陽電池を広げ、 太陽光発電を行い、そのエネルギーをマイクロ波や レーザーなどの電磁波に変換することで地上へ無線 送電し、地上でエネルギーへ再変換し利用する新し いエネルギー供給システムである、宇宙空間で太陽 光発電を行うことによって、地上より高いエネルギ 一密度の太陽光が得られ、また天候や昼夜に左右さ れることなく24時間365日(春分と秋分の一時的な日 陰を除く)安定的に発電を行うことができる、結果と して、地上での太陽光発電に比べ10倍程度のエネル ギーを得ることが可能であると考えられている.

現在, JAXA¹⁾で検討している SSPS には伝送方法の 違いによりマイクロ波方式とレーザー方式がある. また,マイクロ波送電の場合,発電衛星の種類によ り Basic モデルと呼ばれる発電部と送電部 が分離したタイプが検討されている.本研究ではマ イクロ波送電の Advanced モデルを研究対象とする. 以下にマイクロ波方式宇宙太陽光発電衛星(以下 M-SSPS)のAdvanceモデルの概念図を図1として示す.

図 1. M-SSPS の Advanced モデル

M-SSPS の Advance モデルの大きな特徴は太陽電 池パネル(発電部)と送電パネル(送電部)が分離してい ることだけでなく,2枚の巨大な反射鏡を想定してい ることである.この衛星構造物は静止軌道上に投入 され,反射鏡は重力傾斜と太陽輻射圧との釣り合い によって太陽電池パネルと編隊飛行を行う.また, 太陽電池パネルと送電パネルは"コ"の字型に結合さ れている.

次に、反射鏡の役割について述べる.反射鏡は太陽指向とし、太陽光と太陽電池パネルに対して約45°の姿勢角を維持することで、常に太陽電池パネ

ルに太陽光が入射されるようにする役割がある.また,要求に応じて太陽光の集光倍率を高めることで 単位面積当たりの発電量を高めることも考えられている.

しかし、この反射鏡は、1GW 級発電では km 級の 構造が必要となり、軽量化などその実現には多くの 課題がある.そこで本研究では第一段階として、100m 級大型反射鏡について、構造モデルを作成し、数値 解析によりその実現性を検討していく.

2. 目的

本研究では、M-SSPS の Advanced モデルに用いら れる大型反射鏡について 100m 級の構造モデルを作 成し、構造解析、光学解析、熱解析を実施すること で、反射鏡構造モデルの実現性の検討することを目 的とする.解析対象である 100m 級構造モデルは著者 が以前に提案した正三角錐トラスユニットを用いた 六角形反射鏡構造モデルを対象とする²⁾.この構造モ デルに対し、構造解析、光学解析、熱解析を実施し、 その結果から実現に向けての課題抽出を行う.

3. 前提条件

反射鏡は太陽電池パネルと編隊飛行を行うため, 重力傾斜と太陽輻射圧が釣り合う必要がある.その ため反射鏡構造には 300[g/m²]という非常に軽量化が 要求されている.本研究では 100m 級反射鏡構造モデ ルを対象とするため、構造モデルの質量は 3.000[kg] とした.また、反射鏡は鏡、支持構造部、推進-バス 系から構成されているとし、それぞれの質量比は 1:1:1 と仮定した.本研究で提案した構造モデルは支 持構造部を 1,000[kg]で実現していることに特徴があ る. そのため支持構造部には軽量化に有利な中空円 管部材を用いたトラス構造を採用した.また、材料 には 2000 系または 7000 系の Al 合金を標準モデルと して想定する.次に鏡について,鏡は分割鏡(セグメ ントミラー)を用いる.これは反射鏡と太陽電池パネ ルの距離が 5km と非常に大きく、反射光の視野角に よる影響を少なくし、太陽光をムラなく太陽電池パ ネルに反射させるためである. ここで, セグメント ミラーの寸法は 1m×1m の正方形とし、市販のフィ ルムミラーを想定している.また,反射鏡構造の鏡 面設置面積はこの 1m×1m のセグメントミラーを 1 万枚設置できる面積を確保している.最後に、位置 関係であるが、反射鏡は太陽光と太陽電池パネルの 双方に対して 45°の姿勢角保っており、特に太陽電 池パネルとは 5,000[m]の距離がある場合を想定している(図 2).

4. 解析条件

4.1 解析方法

構造解析(固有値解析)は有限要素法により行い, ソルバーには NASTRAN を使用する.光学解析は, あらかじめセグメントミラー1 枚の太陽電池パネ ル上での反射光強度分布をレイトレース法により 求め,その結果をセグメントミラーの総枚数 1 万 枚分を重ね合わせることで,太陽電池パネル上で の反射鏡全体の反射光強度分布を計算する³.熱解 析には温度解析には陰解法であるクランクニコル ソン法及び有限要素法を用いる⁴⁾.熱変形解析は有 限要素法により行いソルバーに NASTRAN を用い る.

4.2 構造モデル

本研究で解析対象とした 100m 級反射鏡構造モ デルを図3に,構造特性を表1に示す.この構造 モデルの特徴は,非対称な変形を抑えるため正六 角形の反射鏡面を持つことである.また,構築の 簡単化や輸送時を考慮して,構造の大部分を同一 の正三角錐ユニットを組み合わせることで構築可 能としている.また,構造はトラス構造ができて おり,全体としてオクテット・トラス構造となっ ていることにも特徴を持つ.

図 3. 正六角形反射鏡構造モデル

表 1. 構造特性		
標準材料	アルミニウム合金	
	(2000 系 7000 系)	
構造タイプ	トラス構造(中空円管部材)	
	部材:直径100[mm] 肉厚0.1[mm]	
部材数	720	
結合点数	181	

5. 各種解析

5.1 構造解析(固有値解析)

正六角形反射鏡構造モデルについて,固有値解 析を行った.その解析結果として,図4に1次か ら3次までのモード図を示す.また,表2に固有 振動数を示す.

図 4. モード形状 (上:1 次モード 中央:2 次モード 下:3 次モード)

表 2.	固有振動数
モード次数	固有振動数[Hz]
1	2.62
2	2.62
3	4 47

5.2 光学解析

1万枚のセグメントミラーは、その取付けによ るミラー角度の誤差によって、集光性能に影響 を与える可能性がある(図7). ここでは、取付け 要求精度について、取付け角度誤差のばらつき を乱数によって模擬することで、集光性能に与 える影響を明らかにする(モンテカルロ法). 一般 に、取付け角度誤差などのばらつきは正規分布 に従うと想定される.以下の表 3 に解析条件を 示す. また、ここでは、集光性能を表す指標と して、集光効率と光強度落ち込みを定義し、解 析の評価を行う.

図7. 取付け角度誤差が集光性能に与える影響

表 3. 解析条件		
乱数	正規分布	
角度誤差のばらつき σ	0.0001~0.01[rad]	
各角度誤差の試行回数	100	
太陽電池パネルの大きさ	形状:正六角形 大きさ:反射鏡の 4倍の面積	
太陽電池パネルと 反射鏡の距離L	5,000[m]	

Presented at the Sixth SPS Symposium, 3-4 October, 2013

図8より,要求される集光性能が,集光効率は 90%以上,強度落ち込みが20%以下であると想定 した場合,要求される1万枚のセグメントミラー が許容できる角度誤差のばらつきは3σ=±

0.003[rad](=±0.171[deg])であることが示された. 反射鏡のセグメントミラーの取付け角度誤差 が集光性能に与える影響が大きい理由として, 太陽電池パネルと反射鏡の距離が大きいこと, また,セグメントミラーに平面鏡を用いたこと により,鏡の回転角の2倍の角度を反射光が持 つことが考えられる.

5.3 熱解析

構造モデルが太陽光によって,温められた場 合,太陽光が入射する面とそうでない面とで温 度差が生じる可能性がある.その温度差により 内部応力が発生,また,部材長さが大きいため, 熱変形量も大きくなる可能性がある.そこで, まずは本構造モデルを構築している中空円管部 材に対して定常熱解析及び非定常熱解析を実施 した.以下に熱解析の概念図を図12として示す. また熱入力は太陽光のみとして-X 方向へ垂直に 入射し,熱出力は全円管部材の表面及び裏面か らの熱放射を想定した.また,部材間の伝熱は 伝導のみで行い,輻射伝熱は考慮しない.その 他の熱解析条件は表4,アルミニウム合金の物性 は表5 て示す.

図 12. 円管部材の熱解析モデル

表 4. 熱解析条件		
スティファンボルツマン定数	5.67×10^{-14}	
$[W/K^4/mm^2]$		
太陽定数[W/mm ²]	1.35×10^{-3}	
初期温度[K]	4.00	
周辺温度[K]	4.00	
太陽光の入射角[゜]	90	

表 5. アルミニウム合金の物性

太陽光吸収率[-]	0.2
放射率[-]	0.1
比熱[J/kg/mm ²]	880
熱伝導率[W/mm/K]	0.15
密度[kg/mm ³]	2.7×10^{-6}
線膨張係数[/K]	2.4×10^{-5}

温度解析結果の定常温度分布及び、非定常 温分布を図13,図14,その他の解析結果を表 5 に示す,

図 13. 円管部材の定常時の温度分布 (円周方向を X 軸, 軸方向を Y 軸として表示)

図 14. 円管部材の非定常時の温度分布 (円周方向をX軸とし. 温度分布を 50 秒ごとに表示)

表 6. 温度解析結果	
定常までの時間[s]	5015
定常時最大温度[K]	310.6
定常時最低温度[K]	272.1
定常時の温度差[K]	38.5
最大温度差[K]	45.8
最大温度差発生時刻[s]	250

4

定常時の温度分布での熱変形図を以下に図15と して示す.また,熱変形量,熱応力値を表6に示 す.

図 15. 円管部材の熱変形図(定常時)

表 6. 熱変形・熱応力解析結果		
温度	差	38.5
[K	.]	
変位量	X 方向	117.5
[mm]	Y 方向	73.8
	Z方向	3.0
応力	最大主	7.1
[MPa]	応力	
	最小主	-4.7
	応力	
	ミーゼ	10.7
	ス応力	

図 13, 14 より、中空円管部材では太陽光が入 射する面とそうでない面とで明らかな温度差が 生じる.その値は表6より,定常時で38[K]程度, 最大で45[K]となる.この部材内部の温度差によ り、図15で示すように、熱変形は太陽光が入射 した面が反る形となる.また.表6より部材内 部に温度差により、熱拘束が生じ、応力が発生 する. 引張応力は Al 合金の降伏応力 200[MPa] には十分余裕があるが, 圧縮応力に関しては, 当円管モデルのオイラー座屈強度(両端回転支持 とした場合)の 5.5[MPa]と非常に近い値をとるこ とがわかる.

このことから、この構造モデルでは、部材内 で大きな温度差が発生し、それより生じた圧縮 応力により,円管部材が座屈破壊する可能性が 考えられる.

5.3 熱対策

円管部材が太陽光の熱入力により座屈破壊 する可能性があるため、熱対策として、材料 を軽量で熱伝導率が高く線膨張係数の小さい Pitch 系 CFRP へと変更する. Pitch 系 CFRP の 物性を表 7 に示す. また、アルミニウム合金 に比べ質量を軽くできるため、ここでは座屈 強度を高めるように肉厚、外径を 1.25 倍にす る. これにより、アルミニウム合金の場合と 質量が一定になるように調整している.

太陽光吸収率[-]	0.89
放射率[-]	0.89
熱伝導率[W/mm/K]	0.80
密度[kg/mm ³]	1.7×10^{-6}
線膨張係数[/K]	1.1×10^{-6}

表 7. Pitch 系 CFRP の物性

温度解析結果の定常温度分布を図16,表8, 熱変形量,熱応力の解析結果を表9に示す,

定常時最大温度[K]	266.7
定常時最低温度[K]	226.6
定常時の温度差[K]	40.1

表 9. 熱変形・熱応力解析結

温度	差	
[K	[]	
変位量	X 方向	5.8
[mm]	Y 方向	3.5
	Z方向	0.1
応力	最大主	0.2
[MPa]	応力	
	最小主	-0.8
	応力	
	ミーゼ	0.8
	ス応力	

Presented at the Sixth SPS Symposium, 3-4 October, 2013

図 16,表8より,材料を熱伝導率の高いCFRPに 変更した場合についても,太陽光入力面とそうでな い面とでは40[K]程度の温度差が生じている.これは CFRP の吸収率と放射率が黒体の放射に近いことが 理由として考えられる.しかし.表9より発生して いる応力は非常に小さくなっていることがわかる. これは CFRP の線膨張係数がアルミニウム合金のそ れの1/20程度であることによる.加えて,高剛性に 有利な Pitch 系の CFRP を使用することで,座屈強度 は 29.9[MPa]と非常に高くなる.

6. 結論

光学解析について、セグメントミラーに要求される取付け精度は鏡と太陽電池パネルの距離が 5,000[m]であれば、許容される取付け角度誤差のばらつきは 3σ で 0.171[deg]であり、非常に高い精度が要求される.

次に熱解析について、本研究では円管モデルの太 陽光入射面とその裏面とで温度差がみられた.この 温度差により内部に熱拘束が生じ、大きな応力が発 生した.特に本円管モデルは非常に長細いモデルで あるため、座屈破壊を起こす可能性が高いことが明 らかになった.そこで、高熱伝導性、低熱膨張率、 軽量、高剛性の特徴を持つ Pitch 系 CFRP に変更する と、発生熱応力を小さくかつ、高剛性化できること が明らかにされた.したがって、熱対策として Pitch 系 CFRP を使用することは、熱対策、高剛性化に非 常に有効であることが示された.

7. 今後の課題

今回の解析により,光学,熱の問題点が明らかに された.今後は構造,光学,熱の要求値を満たす, より最適な構造モデルを再構築する必要がある.

参考文献

- T. Fujita, S. Sasaki and D. Joudoi, "Overview of Studies on Large Structure for Space Solar Power Systems (SSPS)" IAC-10-C3.2.9, IAC2010
- 2) K. Kazuya, T. Fujita, M. Matsui, Y. Yamagiwa and S. Sasaki, "THE STUDY ON STRUCTURE OF LARGE REFLECTOR FOR SPACE SOLAR POER SYSTEMS (SSPS)" 13th ISCOPS 2012
- 4) 茂原正道, 鳥山芳夫 "衛星設計入門" 培風館